

Geometric Prob. dist:
It is Similar to binomial Prob. dist. except
1) There is no fixed number of trials n.
2)
$$x$$
 is the number of trials when
first success happens. $x \ge 1$
 $1, 2, 3, 4, ...$
 $P(x) = P \cdot q^{X-1}$
 $P \Rightarrow Prob. of Success$
 $q -p$ Prob. of failure
 $P + q = 1$, $q = 1 - p$
Mean $M = \frac{1}{p^2}$
 $Vorionce \ T^2 = \frac{q}{p^2}$
 $Standard \ T = \int T^2$

Consider a geometric Prob. dist with p=.2

$$9=1-P=.8$$
 $O_{=}^{2}\frac{9}{P^{2}}\frac{.8}{.2^{2}}=20$
 $M=\frac{1}{P}=\frac{1}{.2}=5$ $U=\sqrt{0^{2}}=\sqrt{20}\approx 4.5$
Usual Range $M\pm 20=5\pm 2(4.5)$
 $=5\pm 9=p-4\pm 014$
P(Sirst Success happens on 3nd trial)
 $P(x=3)=.2\cdot(.8)^{3-1}$ $x-1=.2\cdot(.8)^{2}=1.128$
 $P=T$
Using TI Command
 $2nd$ VARS db geometrds(.2,3)=1.128
P(Sirst Success happens before the 3nd attempt)
 $P(x<3)=P(x<2)=geometrds(.2,2)=.36$

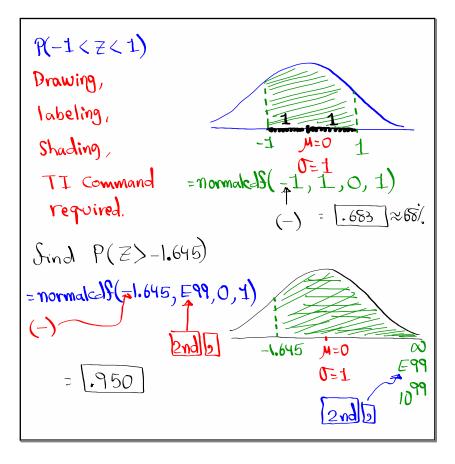
Prob. oS making Sales on any Call is .4.
P=.4
$$\gamma$$
=.6 Round $M \notin G$ to
 $M = \frac{1}{p} = \frac{1}{.4} = 2.5$ a whole #1, then
 $U^2 = \frac{\gamma}{p^2} = \frac{.6}{.4^2} = 3.75$ Jind (68% Range)
 $U^2 = \frac{\gamma}{p^2} = \frac{.6}{.4^2} = 3.75$ Jind (68% Range)
 $U = \int 0^2 = \sqrt{3.75} \approx 1.936$ $M \pm 0 = 3 \pm 2$
 $= \sqrt{1 \pm 55}$
P(Sirst Sales happens on the 4th Call)
P(X=4) = geomet pdS(.4, 4) = .0864 = .0861
P(Sinst Sales happens ofter the $\frac{54}{625}$
P(Sinst Sales happens ofter the 4th Call)
P(X) = P(X \ge 5) = 1 - P(X \le 4)
We don't we want 1 =1-geometrdf(.4, 4)
 $U = \frac{81}{625}$
Net don't we want 1 =1-geometrdf(.4, 4)
 $V = \frac{81}{625}$

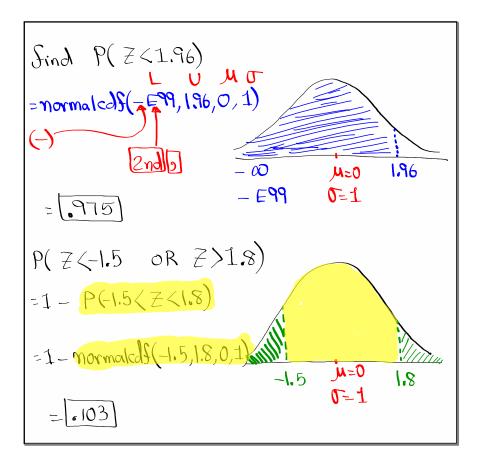
Also in SG IT
Poisson Prob. dist:
Average # of Successes
$$\mathcal{M}$$
 is given
for a fixed interval.
 x is # of Successes in that fixed interval
 $x \ge 0$ $0, 1, 2, 3, 4, \cdots$
 $P(x) = \frac{\mu^{x}}{x!} \cdot e^{-\mu}$ $e \approx 2.718$
 $\sigma^{2} = \mu$, $\sigma = \sqrt{\sigma^{2}}$

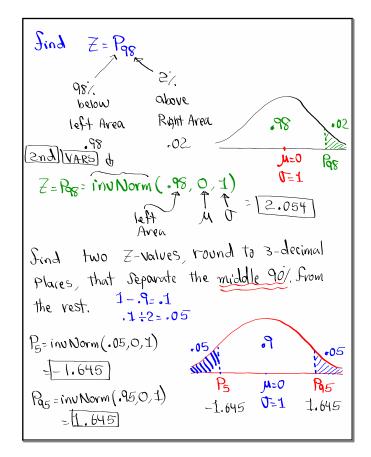
Consider a poisson prob. dist with

$$M=16$$
 over a fixed interval.
 $G^{2}=M=16$ $U=\sqrt{0^{2}}=\sqrt{16}=4$
Usual Range $M\pm 20=16\pm 2(4)=16\pm 8$
 $M \times 315$ $=\frac{16}{8} \times 24$
 $P(x=15)=\frac{316}{815!} \cdot \frac{e^{-16}}{16!} e^{-16} e^{-16}$ $e\approx 2.718$
 $\chi_{1}=15!$ $\lim_{x \to 15!} \lim_{x \to 15$

Judi draw blood in average 60 in one shift M=60 Sixed interval $\sigma^2 = \mu = 60$ Round MEO to a whole # $T = \sqrt{\sigma^2} = \sqrt{60} = 7.746$ M=60, J=8 Usual Range $\mathcal{M} \pm 2\Gamma = 60 \pm 2(8)$ =60 ± 16 = £44_to P(she draws 45 bloods in one shift) $P(x=45) = Poisson PdS(60, 45) \sim 1.008$ P(she draws out least 50 bloods in one shift) $P(x \ge 50) = 1 - P(x \le 49)$ we don't we want =1-poissoncalf(60,49) 1 Want 5 Total Prob. - [.916]

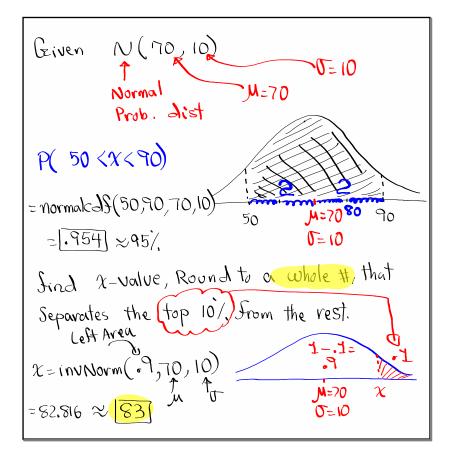


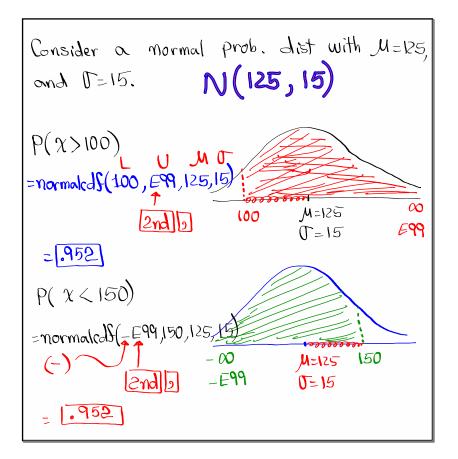




Normal Prob. dist:
1) Use x, P(x=c)=0
2) Data dist. is symmetric, bell-shape,
Total over = 1
3) Mean = Mode = Median
4)
$$\mathcal{M} \notin \mathcal{T}$$
 are given in the Problem.
5) $P(a < x < b)$ is the Corresponding over
within the bell-shape graph.
Minimum Shape graph.
N(\mathcal{M}, \mathcal{O}) \mathcal{O}

July 11, 2022





Find two x-values, Round to a whole #,
that Separate the middle SO'. from the rest.

$$1 - .8 = .2$$

 $.2 \div 2 = .1$
 $x = P_{10} = invNorm(.1, 125, 15)$
 $x = P_{0} = invNorm(.9, 125, 15)$

Speed of Cars on Certain FWY has a
normal dist with
$$M = 68$$
 mph and
 $T=6$ mph. $N(68,6)$
IS we randomly Select 1 Cor
Sind the prob. that speed is below 65
or above 80.
 $P(X < 65 \ OR \ X > 80)$
 $=1 - P(65 < X < 80)$

Find K Such that
$$P(X)K = .01$$
,
Round to a whole # Top Area
 x is the Speed OS a car on that FWV
K=invNorm(.99, 68, 6)
Left 10 .99
Aren 10 .01
 $M=68$ K
 $0=6$

