



Some rules: 1) $0 \le P(x) \le 1$ 2) Sum of all prob. = 1 3) $P(x) = 1 \iff Sore event$ 4) P(x)=0 Impossible event 5) $0 < P(x) \le .05 \iff \text{Rare event}$ Mean μ "mu" $\mu \ge \chi p(x)$ Variance \mathcal{O}^2 "sigma?" $\mathcal{O}^2 \ge \chi^2 p(x) - M^2$ \mathcal{O} "Sigma" $\mathcal{O}=\sqrt{\mathcal{O}^2}$ Standard deviction

Consider the table below

$$\begin{array}{c|c} x & P(x) & xP(x) & z^{2}P(x) \\ \hline 1 & \cdot 2 & \cdot 2 & \cdot 2 \\ \hline 2 & \cdot 5 & 1 & 2 \\ \hline 3 & \cdot 3 & \cdot 9 & 2 & \cdot 1 \\ \hline 2 & \cdot 5 & 1 & 2 \\ \hline 3 & \cdot 3 & \cdot 9 & 2 & \cdot 1 \\ \hline 2 & z^{2}P(x) - M^{2} & z^{2}P(x) = 2 & \cdot 1 \\ \hline 0 & z^{2} = \sum \chi^{2}P(x) - M^{2} & \overline{0} = \sqrt{0^{2}} \\ = 4 & \cdot 9 - 2 & \cdot 1^{2} = -4 & \cdot 9 \\ \hline 0 & z^{2} = \sqrt{-49} & z^{2} & \overline{0} = \sqrt{0^{2}} \\ = 4 & \cdot 9 - 2 & \cdot 1^{2} = -4 & \cdot 9 \\ \hline 0 & z^{2} = \sqrt{-49} & z^{2} & \overline{0} = \sqrt{12} \\ \hline 0 & z^{2} = \sqrt{-49} & z^{2} & \overline{0} = \sqrt{12} \\ \hline 0 & z^{2} = \sqrt{-49} & z^{2} & \overline{12} \\ \hline 0 & z^{2} & z^{2} & \overline{12} \\ \hline 0 & z^{2} & z^{2} & \overline{12} \\ \hline 0 & z^{2} & z^{2} & \overline{12} \\ \hline 0 & z^{2} & z^{2} & \overline{12} \\ \hline 0 & z^{2} & z^{2} & \overline{12} \\ \hline 0 & z^{2}$$

A box Contains 2 quarters and 3 nickels.
Select 2 Coins with replacement.
NN NQ QN QQ Sample Space

$$T$$
 T T T
 10° 30° 30° 50°
 $P(10^{\circ}) = P(NN) = \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{25} = \cdot 36$
 $P(30^{\circ}) = P(NQ \text{ or } QN) = 2 \cdot \frac{3}{5} \cdot \frac{2}{5} = \frac{12}{25} = \cdot 48$
 $P(50^{\circ}) = P(QQ) = \frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25} = \cdot 16$
 $\frac{10^{\circ}}{30^{\circ}} \cdot \frac{16}{16}$
 $\frac{30^{\circ}}{16} \cdot \frac{16}{16}$
 $\frac{10^{\circ}}{50^{\circ}} \cdot \frac{16}{16}$
 $10^{\circ} \cdot \frac{36}{50^{\circ}} \cdot \frac{16}{16}$
 $10^{\circ} \cdot \frac{16}{50^{\circ}} \cdot \frac{16}{16}$
 $10^{\circ} \cdot \frac{16}{16}$
 10°

Application
Expected Value
20 Students bought 1 TKT each for \$10.
A drawing took place. Net gain
$$P(Net gain)$$

One tkt drawn. $10-100$ 1/20
Winner gets a $10-0$ 19/20
new calc. worth \$100. Net gain \rightarrow L1
 $P(Net gain) \rightarrow$ L2
Expected Value = $M = \overline{X}$ E.N. = \$5
 $1 - Var Stats LI_2L2$ House makes
 $\pm 5/TKT.$

You are taking a flight.
You buy insurance for \$50 for luggage.
Any damages, Airline pays \$500.
Prob. of any damage is .2%
Sind expected Value per Policy Sold.
Net gain P(Net gain) Net gain ->LI
50 - 500 .2% = .002
$$50 - 0 | 1 - .002 = .998$$
 P(Net gain) ->L2
 $E.N.=M=\overline{X}$
Airline makes \$49/Policy 501

I randomly selected 10 newborn babies.
Assume having a girl is success.

$$P_{=}.5$$
 $q_{=}.5$ $n_{=}10$
 $P(exactly 6 girls)$ x $n-x$
 $P(x=6) = 10^{\circ} 6 \cdot (.5)^{\circ} (.5)^{\circ} = .205$
 $n = 10^{\circ} 6 \cdot (.5)^{\circ} (.5)^{\circ} = .205$
Using TI command:
 $P = x$
 $P = x$

I tossed a loaded Coin 15 times.
P(land tails) = .6
$$M = 15$$

 $P = .6 = 4$
P(exactly 10 tails)
= P(x = 10) = binompdS(15, .6, 10) = .186
P(at most 10 tails)
= P(x < 10) = P(x = 10) + P(x=9) + P(x=8) + ... + P(x=0)
= binomgdS(15, .6, 10) = .183
P(at least 8 tails)
= P(x > 8) = 1 - P(x < 7)
We don't we want = 1 - binom(cdS(15, .6, 7))
Want 78 = .787

You are making random guesses on a
multiple choice exam with 50 questions.
Each question has 4 choices with
only one correct choice.

$$M=50$$
 $P=\frac{1}{4}=.25$ $Q=\frac{3}{4}=.75$
 $P(\text{ exactly 10 Correct Ans}):$
 $= P(X=10) = \text{binom} pdS(50,.25,10)=.099$
 $P(\text{ Sewer than 15 Correct Ans})$
 $= P(X < 15) = P(X \le 14) = \text{binom} cdS(50,.25,14)$
 $= .748$
 $P(\text{ more than 10 Correct Ans})$
 $= P(X > 10) = P(X \ge 11) = 1 - P(X \le 10)$
We don't we want $= 1 - \text{binom} cdS(50,.25,14)$
 $= .738$

$$P(x = a) = binompdf(n, P, a)$$

$$P(x \le a) = binomcdf(n, P, a)$$

$$P(x \ge a) = 1 - binomcdf(n, P, a-1)$$

$$P(a \le x \le b) = binomcdf(n, P, b) - binomcdf(n, P, a-1)$$

Consider a binomial Prob. dist with

$$M = 125$$
 and $P = .8$
 $1)q = 1 - P$
 $= 20$
 $1)q = 1 - P$
 $= 20$
 100
 $125(.8)(.2) =$
 100
 $125(.8)(.2) =$
 100
 $125(.8)(.2) =$
 100
 $125(.8)(.2) =$
 100
 $125(.8)(.2) =$
 100
 $125(.8)(.2) =$
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 1000
 1000
 1000
 1000
 1000
 1000
 10

July 6, 2022

AA Says 90% of flights are on time.
I took 40 flights.
1)
$$n = 40$$
 2) $P = .9$ 3) $9^{-1} = .1$
4) $n P = 40(.9)$ 5) $n P q = 40(.9)(.1)$ 6) $\sqrt{n p q}$
 $= \frac{1}{3.6}$ $= \sqrt{3.6}$
 $= \frac{1}{3.6}$ $= \sqrt{3.6}$
 $= \frac{1}{3.891}$
7) P(between 35 and 39 flights, inclusive,
are on time)
P(355 x < 39) = binom cd f(40, .9, 39)
 $- binom cd f(40, .9, 34)$
 $= [.779]$

For Binomial Prob. dist
Mean
$$M = np$$

Variance $T^2 = npq$
Standard $T = \sqrt{T^2}$
Deviation

I Slip a Sour Coin 400 times.
Success is to land tails.
1)
$$n = 400$$
 2) $P = .5$ 3) $q = .5$
4) $M = np$ 5) $0^{2} = npq$ 6) $0^{2} = .5$
4) $M = np$ 5) $0^{2} = npq$ 6) $0^{2} = .5$
4) $M = np$ 5) $0^{2} = npq$ 6) $0^{2} = .5$
4) $M = np$ 5) $0^{2} = npq$ 6) $0^{2} = .5$
5) $0^{2} = .5$ 3) $q = .5$
5) $0^{2} = .5$ $0^{2} = .5$ $0^{2} = .5$
7) 68% Range = $M \pm 0^{2} = 200 \pm 10 \Rightarrow 190$ to 210
8) USUAL Range = $M \pm 0^{2} = 200 \pm 2(10) \Rightarrow 180$ to 220
95% Range
9) P(# tails is between 180 and 220, indusive
P(180 $\leq X \leq 220$) = binomed \$(400, .5, 220) -
binomed \$(400, .5, 179)
Exam IL
Monday = .960 = 96%.
Details: Read my emails.