
Elementary Statistics Lecture 4


```
Consider the Sample below
                           Clear all lists
     72
           65
                80 90
                          2nd + 4:
                           store this Sample
                 100 91
      55
            60
93
            75
                          in LI
      77
                 98
                      100
                          STATIES!
             82 80 85
      25
Sind \(\overline{\chi}\) and S. Round to a Whole #)
                        \overline{\chi} = 80.55
STAT CALC
                        S=Sx=12.829
      1: 1-Var stats
                                        S=13
Sind S2 in reduced Struction
VARS 5: Statistics 3: Sx x2 MATH 1: Snow Enter
                               S^2 = \frac{62539}{380}
Sind
68%. Range →X +S=81+13 → 68 to 94
Usual Range > x +28 = 81 +2(13) = 55 to 107
  95% Range
```



```
A data Set has a mean of 120 and Stand. dev. of 15.

1) Sind the Z-Score for data element 165.

Z = \frac{\chi - \bar{\chi}}{8} = \frac{165 - 120}{15} = \frac{45}{15} = 3

165 is an unusual data element Z < -2 or Z > 2

2) Sind a data element with Z - 5 ore of Z = \frac{\chi - \bar{\chi}}{8}

Z = \frac{\chi - \bar{\chi}}{8} = \frac{\chi - \bar{\chi}}{15} = \frac{\chi - \bar
```

```
what is standard deviation?

S= \int s^2

Standard deviation is non-negative.

It is a numerical value that indicates how data elements deviate (vary) from the mean.

When S is Small > Data elements are close to the mean.

When S is large > data elements are more spread out from the mean.

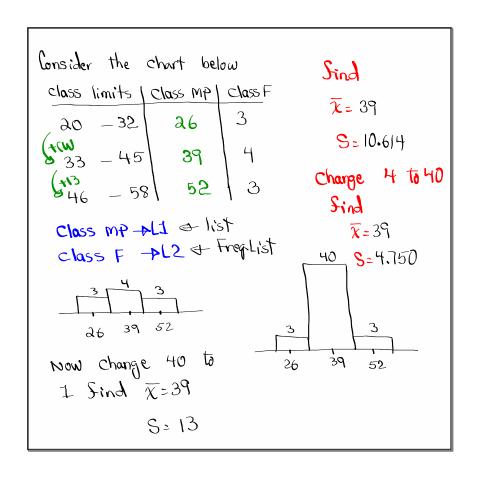
When S = 0 => All data elements are the same and = to mean.
```

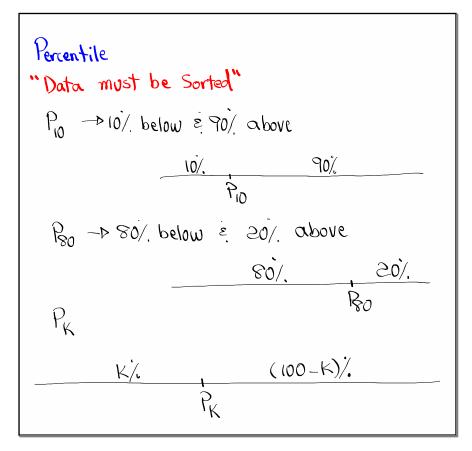
Clear all lists

Store the Following in LT

10 10 10 10
$$\overline{\chi} = 10$$

10 10 10 10 $\overline{\chi} = 0$


Change the First 10 $\overline{\chi} = 10.125$


to 14

Now Change 14 to $\overline{\chi} = 133.75$

1000

S=350.018

How to find
$$P_K$$
:

L = $\frac{K}{100}$. The Lisadecimal = Round-up -> P_K = Lth element

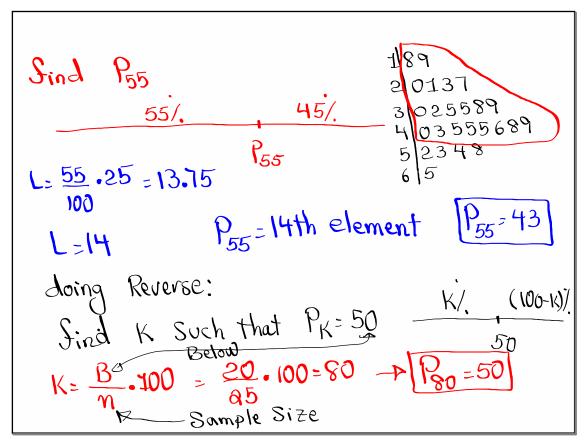
The Lisadecimal = Round-up -> P_K = Lth element

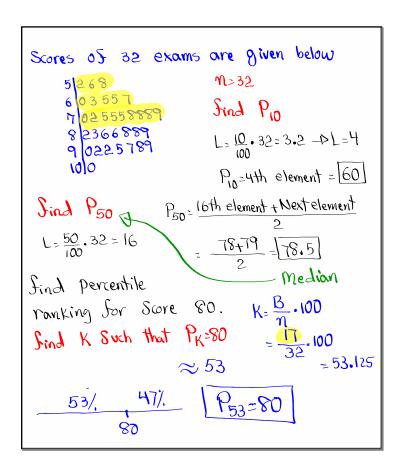
The Lisadecimal = P_K = $\frac{1}{2}$ Lth element + Next one

The Lisadecimal = $\frac{1}{2}$ Round-up -> $\frac{1}{2}$ P_K = Lth

The element + Next one

2


The element + Next one


2

Sind P40

1 = $\frac{40}{100}$. 25 = 10

1 = $\frac{35+38}{2}$ = $\frac{103+35+38}{2}$ = $\frac{103+35+38}{2}$


```
Ages of 24 randomly selected students are given below

28 25 32 40 18 Sort, Make

20 19 35 25 45 STEM Plot

50 20 17 23 38 \frac{1}{7}889

50 20 17 23 38 \frac{1}{7}889

40 52 18 20 \frac{1}{9}000355558

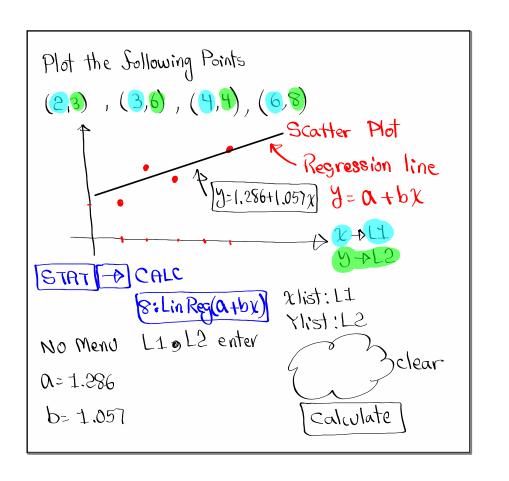
40 52 18 20 \frac{1}{9}0058

Sind P20

L=\frac{20}{100} \cdot 24 = 4.8 \rightarrow L=5

Sind P80

L=\frac{80}{100} \cdot 24 = 19.2 \rightarrow L=20


Sind P80 \rightarrow Median

L=\frac{50}{100} \cdot 24 = 12

P50=\frac{12th}{2} \cdot \text{Next} = \frac{25+26}{2} = \frac{26.5}{2}
```

Sind K Such that
$$\frac{1}{7889}$$
 $\frac{1}{2000355558}$ $\frac{1}{23589}$ $\frac{1}{23589}$ Sample Size $\frac{1}{235}$ $\frac{1}{235}$ Sample Size $\frac{1}{235}$ $\frac{1}{23$

Complete the chart below						
χ	y	x2 y xy clear all lists				
1	<i>5</i>	1 4 2 $\chi \rightarrow L1$				
5	5	4 25 10 W 12				
3	4	9 16 12 y->12				
4	6	16 36 24 STAT -> CALC				
		2:2-Vavsta				
$\geq \chi =$	10	$\geq y=17$ x list: L1) L1, L2				
$\geq \chi^2$	30	Zy2=81 Ylist:L2 FreqList: blank Enter				
W =	4	Exy= 48 Colculate				

Study timey	QZ Store	1 8
2	8	
3	9	8
2	10	3
1	7	→
0	1 5	1 2 3 STATICALC
Study	time $\rightarrow \chi$	(ALI (8: Linkeg (a+bx)
QZ	$S(ore \rightarrow i$	y -> 12 0=5.462
0.25		b= 1.462
$0 \approx 5$ $b = 1$	-> J = 5	$+\chi$

Closs QZ 1: Consider the Sample below					
8 12 10 10 7 15 13 20 18 12	Sind 1) x				
$\bar{\chi}$ = 12.5	a) S in 3-decimals.				
$S = 4.170$ $S^2 = \frac{313}{18}$	3)52 in reduced fraction				