Sets are collection of objects

Set Notation \{\}

Elements of the set, members of the set are inside of set notation.

\(A = \{1, 2, 3, 4\}\) \(\begin{array}{l}
\text{Finite} \\
1 \in A \quad \text{is an element of set } A \\
8 \notin A \quad \text{is not an element of } A.
\end{array}\)
\[A = \{ \text{John, Jill, Jen, Jack} \} \]
\[B = \{ \text{Mike, Moe, Mary} \} \]

Operations with Sets

1. **Intersection** \(\cap \) only common elements
2. **Union** \(\cup \) all elements repeated or not.

\[A = \{ 2, 4, 6 \} \quad B = \{ 6, 8, 10, 12 \} \]

\[A \cup B = \{ 2, 4, 6, 8, 10, 12 \} \]

Elements of \(A \), \(B \), or Both.

\[A \cap B = \{ 6 \} \]

Only common elements

\[A = \{ 1, 3, 5, 7, 9 \} \quad B = \{ 2, 4, 6, 8, 10 \} \]

Find

\[A \cup B = \{ 1, 2, 3, \ldots, 10 \} \]

Do not say

\[A \cap B = \{ \} \quad \text{Empty Set} \]

\[\{ \emptyset \} \]
working with inequalities:

\[2(x-7) + 4 \leq 4x + 20 \]

\[2x - 14 + 4 \leq 4x + 20 \]

\[2x - 10 \leq 4x + 20 \]

\[2x - 4x \leq 20 - 10 \]

\[-2x \leq 30 \]

Divide by -2

\[x \geq -15 \]

1. Set-Builder notation

\[\{ x \mid x \geq -15 \} \]

2. Graphing

3. Interval Notation

\[[-15, \infty) \]

Solve \(-4 \leq 3x + 5 < 26\)

Isolate \(x\) in the middle.

\[-4 - 5 \leq 3x < 26 - 5 \]

\[-9 \leq 3x < 21 \]

\[-3 \leq x < 7\]

1. S.B.N.

\[\{ x \mid -3 \leq x < 7 \} \]

2. Graphing

3. Interval

\[[-3, 7) \]
Solve: \[2 \leq -2x - 6 \leq 14 \]

\[2 + 6 \leq -2x \leq 14 + 6 \]
\[8 \leq -2x \leq 20 \]
\[\frac{8}{-2} \geq x \geq \frac{20}{-2} \]
\[-4 \geq x \geq -10 \]

\[\{ x | -10 \leq x \leq -4 \} \]

\[-10 \leq x \leq -4 \]

\[\text{Graph} \]

\[\text{S.B.N.} \]

\[\text{I.N.} \]

Inequalities with OR

1) Solve each one.
2) Graph them on the same number line system.
3) Final ans is all the regions that are shaded.

\[3x - 2 \leq -11 \quad \text{OR} \quad -2x + 3 < -15 \]
\[3x \leq -9 \quad \text{OR} \quad -2x < -18 \]
\[x \leq -3 \quad \text{OR} \quad x > 9 \]

\[\{ x | x \leq -3 \quad \text{OR} \quad x > 9 \} \]

\[\text{I.N.} \]

\[(-\infty, -3] \cup (9, \infty) \]
Solve
\[2(x+3)-10 \leq 6 \quad \text{OR} \quad -3x + 7 < 19 \]

\[2x + 6 - 10 \leq 6 \]
\[2x - 4 \leq 6 \]
\[2x \leq 10 \]
\[x \leq 5 \quad \text{OR} \quad x > -4 \]

\[-3x < 19 - 7 \]
\[-3x < 12 \]

S.B.N. \(\mathbb{R} \) Real numbers
\[\{ x \mid x \in \mathbb{R} \} \quad \text{I.N.} \ (-\infty, \infty) \]

Inequalities with AND
1. Solve each one.
2. Graph them on the same number line system.
3. Final ans is \textcolor{red}{\textit{only}} the overlap region.

\[2x - 7 \geq -11 \quad \text{AND} \quad 3(x+4) - 1 < 32 \]
\[2x \geq -4 \quad \text{AND} \quad 3x + 21 < 2 \]
\[x \geq -2 \quad \text{AND} \]
\[x < 7 \]

S.B.N. \(\{ x \mid -2 \leq x < 7 \} \)
I.N. \([-2, 7) \)
Solve

\[3x - 7 > 2(x - 1) - 5\] \hspace{1cm} \text{AND} \hspace{1cm} -2x + 14 \geq 18

\[3x - 7 > 2x - 2 - 5\] \hspace{1cm} \text{AND} \hspace{1cm} -2x \geq 18 - 14

\[3x - 7 > 2x - 7\] \hspace{1cm} \overline{\text{Overlap}}

\[x > 0\] \hspace{1cm} \text{AND} \hspace{1cm} \overline{x \leq -2}

\[\overline{\text{No Solution}}\]

\[\overline{\text{there is no overlap.}}\]

Graph & Shade:

1. \(y \geq 3\) \hspace{1cm} \text{Horizontal line}

2. \(x < -4\) \hspace{1cm} \text{Vertical line}

3. \(y \geq \frac{2}{3}x - 2\)
Graph & Shade:
\[
\begin{cases}
3x - 4y \geq 8 \\
x > -2
\end{cases}
\]

Tip: write in Slope-Intercept Form.

-4y \geq -3x + 8
\Rightarrow y \leq \frac{3}{4}x - 2

Zero Slope $\Rightarrow y = b$

No Slope $\Rightarrow x = a$

Due Tuesday

S & 4

Graph

$f(x) = 4$
Constant Function
$y = 4$ H.L.

$g(x) = -3x + 4$
Linear Function
$y = -3x + 4$
$m = -3 = \frac{-3}{1}$

$g(x) = -3x + 4$
Graph \(f(x) = (x-2)^2 + 1 \)

Square Function

\(x - 2 = 0 \Rightarrow x = 2 \) Starting Point

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Graph \(f(x) = |x+3| - 2 \)

Abs. Value Function

\(x + 3 = 0 \Rightarrow x = -3 \) Starting Point

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>1</td>
</tr>
<tr>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Absolute Value Equations $|ax+b|=k$

NO Solution when $k<0$

Otherwise Solve

$ax+b=k$ or $ax+b=-k$

Solve $|2x-3|=5$

$2x-3=5$ or $2x-3=-5$

$2x=8$ or $2x=-2$

$\boxed{x=4}$ or $\boxed{x=-1}$

$\{ -1, 4 \}$
Solve

\[|3x+4| = -8 \]
\[\emptyset \]

Always make sure that Abs. Value is totally isolated.

\[|3x+4| = 8 \]
Solve
\[3x+4 = 8 \quad \text{or} \quad 3x+4 = -8 \]
\[3x = 4 \quad \text{or} \quad 3x = -12 \]
\[x = \frac{4}{3} \quad \text{or} \quad x = -4 \]
\[\{ -4, \frac{4}{3} \} \]

Solve
\[-2|x+6| + 4 = -10 \]
\[-2|x+6| = -14 \]
\[|x+6| = 7 \]
\[x+6 = 7 \quad \text{or} \quad x+6 = -7 \]
\[x = 1 \quad \text{or} \quad x = -13 \]
\[\{-13, 1\} \]

\[\text{Isolate First} \]
\[\text{Take away 4, Divide by -2.} \]
\[|ax+b| = |cx+d| \]

Solve:
\[ax+b = cx+d \quad \text{or} \quad ax+b = -(cx+d) \]

Solve:
\[|2x+7| = |x-9| \]

\[2x+7 = x-9 \quad \text{OR} \quad 2x+7 = -(x-9) \]

\[2x-x = -9-7 \]
\[x = -16 \quad \text{OR} \quad 2x+7 = -x+9 \]
\[3x = 2 \]
\[x = \frac{2}{3} \]

\[\{-16, \frac{2}{3}\} \]

\[|x+8| = |x-8| \]

Solve:
\[x+8 = x-8 \quad \text{or} \quad x+8 = -(x-8) \]

\[x+8 = -x+8 \]
\[2x = 0 \]
\[x = 0 \]

\[\emptyset \]

Due Thursday
Project 1.